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Raven: Bayesian Networks for 
Human-Computer Intelligent Interaction 
 
Ole J. Mengshoel and David C. Wilkins  
 
Abstract. Bayesian Networks are a promising computational formalism for 
drawing conclusions from large amounts of intelligence analysis data.  They are 
suited to this human-computer intelligent interaction task because they’re easily 
mapped onto a comprehensible graphical network representation; and because 
they are superb in domains with large amounts of uncertain data. This paper 
shows how the intelligence analysis task can be mapped into Bayesian networks. 
And it overviews two research contribution: two new heuristic algorithms for 
efficient inference and approximation of Bayesian networks; and algorithms to 
generate representative test sets for evaluation of faster methods of inference.   
 
1. Introduction 
 
Bayesian networks (BNs) are an essential knowledge representation technique in 
artificial intelligence [Pearl 1988].  Substantial progress has been made in recent 
years in all areas of BN research. However, there are still important problems to 
solve, and the contributions presented in this chapter fall in three categories.  
First, we describe how the challenging task of analyzing sensor intelligence 
reports can be solved using Bayesian network representation and inference 
methods. Second, to address the slowness of Bayesian networks with respect to 
real-time intelligence analysis, we present approximation methods that deliver 
significant inference speedup. These methods are the stochastic search 
techniques of probabilistic crowding and stochastic greedy search as well as 
abstraction methods, which can be used when computing the most probable 
explanation in BNs.  Third, to facilitate the development of more efficient 
inference techniques on large Bayes ian networks, we have developed techniques 
to construct large synthetic BNs for empirical experimentation. In particular, 
two constructions are presented: deceptive BNs and satisfiability-like BNs.  
 
Intelligence analysis is a complex reasoning task where uncertain and 
incomplete data and knowledge is pervasive, in particular with respect to 
knowledge about the other players intentions and actions. A BN can be used to 
address these issues, and this chapter describes how this can be accomplished.   
The rest of this chapter is organized as follows.  In Section 2 we present BNs.  
Section 3 discusses how BNs can be used for intelligence analysis. Section 4 
summarizes the novel research results on heuristic algorithms, Section 5 focuses 
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on construction of synthetic BNs for systematic experimentation, and Section 6 
concludes.  
 
2. Bayesian Networks  
 
Bayesian networks (BNs) are used for reasoning and learning under uncertainty.  
Probability theory and graph theory form their basis: random variables are 
represented as nodes, conditional dependencies are represented as edges, and 
structured as a directed acyclic graph. In a discrete BN with n nodes 
{ }nXX ,...,1  and instantiations 
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ixπ is the instantiation of the parents of node iX , which has instantiation 

ix . Inference in BNs, in the form of belief updating revision and belief revision, 

is the focus of our research. Belief updating amounts to the following: Given 
query node Q and evidence e at nodes E, infer posterior probability Pr(Q | e).  
Note that any nodes in the network can be evidence or query nodes.  Belief 

revision amounts to computing a most probable explanation MPEx  in a BN, 
namely  
  

nexplanatioan 
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where an explanation x  instantiates all nodes except the evidence nodes.  A 
variety of approaches to BN inference have been investigated by Pearl, 
Lauritzen, Lin, Rojas-Guzman, and Mengshoel, among others. These inference 
algorithms vary in many respects – they are exact, approximate, or heuristic; 
work on singly or multiply connected graphs; and are used on different inference 
tasks including belief propagation and belief revision.  For both of these 
computational tasks, NP-hardness has been proven [Cooper, 1990], and unless P 
= NP, solving these tasks approximately or heuristically is therefore important, 
and is discussed below.  
 
3. Intelligence Analysis Using Bayesian Networks  
 
In this section we discuss the intelligence analysis task, and in particular what 
the problem involves in terms of human decision making, the input given to a 
human intelligence analyst and the output that is required.   
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3.1 The Intelligence Analysis Problem 
 
The role of intelligence analysts is to provide assessments of the situation, in 
particular the activity of the opposing side [Mengshoel, 1997a] [Mengshoel, 
1998a].  Specifically, the purpose of intelligence analysis is to answer priority 
intelligence requests (PIRs) such as “Position of opposing force”. There is a 
doctrinal one to one mapping between PIRs and decisions that are made during 
an engagement, so PIRs play a central role in the reasoning process. Based on a 
terrain map, and tactical and strategic knowledge, the analyst identifies named 
areas of interest (NAIs).  NAIs are areas where one is more likely to find 
opposing forces given the terrain.  For instance, an NAI might be a choke point.  
After identifying NAIs, the analyst allocates intelligence assets to investigate a 
number of these NAIs, resulting in intelligence reports. Figure 1 shows how 
these intelligence reports are input to the Bayesian reasoning system. Table 2 
provides examples of the intelligence reports, called SALU TE reports. SALUTE 
is an abbreviation for the header fields of a SALUTE report, namely, Sensor, 
Activity, Location, Unit, Time, and Equipment.  
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Figure 1. Bayesian belief networks for intelligence analysis. The intelligence analyst and 

the Bayesian Network are given the same input, namely SALUTE reports. Thus the 
analyst conclusions can be compared and contrasted with those of the Bayesian Network 
  
What makes this task of interpreting SALUTE intelligence reports difficult for 
intelligence analysts? The first major challenge is the amount of uncertainty in 
each of the SALUTE data fields. For example, Sensor types have different levels 
of reliability and credibility. The second major challenges in interpreting 
SALUTE reports is their large volume. At present, 100s to 1000s of intelligence 
reports per hour is common, and as the degree of automation in data collection 
increases, this information rate is going to increase, too. Experience has shown 
that it is easy to for an analyst to over-look a small, but crucial, piece of 
information that might be inconsistent with other observations received so far.  
Clearly, BNs can help with both of these challenges. 
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Table 1 Examples of three intelligence reports in SALUTE format. The 
intelligence analyst and the BN infer conclusions based on this information.   

 
Time Sensor Location Size Equipment Unit Activity 

200917 SIGINT NK285105 ? artillery ? traffic 
200943 JSTARS NK4300  to 

NK3000 
200+ MTI ? moving 

201203 REMBASS 
strings 

R2-R5 200+ vehicles ? moving 

 
3.2 Mapping Intelligence Analysis Tasks into Bayesian 

Networks  
 
Due to the complexity of manual intelligence analysis, some type of automated 
decision aid is desirable.  When integrated into a software system as shown in 
Figure 1, an intelligence analysis BN as shown in Figure 2 can be used to 
perform the intelligence analysis task automatically.  The BN-based approach is 
to perform data fusion and filtering using BNs and output and visualize the 
results. As new information is received, the BN probabilities change, and we 
give examples showing how this takes place.   
 
As an example of mapping intelligence task onto BNs, we focus on enemy 
defensive scenarios, where the enemy is defending and friendly forces are 
attacking. Here, a BN is used to model the enemy and to filter uncertain 
information.  An example BN model for battlefield reasoning is shown in Figure 3.  
The intelligence analysis task is analogous to medical diagnosis, where the PIRs 
are diagnoses and intelligence reports are symptoms.  Consequently, these 
networks consist of several layers. The diagnosis layer corresponds to priority 
intelligence requests (PIRs). The symptom layer corresponds to SALUTE 
reports.  Such reports typically affect the probabilities in other BN nodes, and in 
particular PIR nodes, as illustrated in Figure 2.  
 
3.3 Advantages of Using Bayesian Networks  
 
There are several advantages of using BNs in the Intelligence Analysis domain.  
First, BNs are ideally suited for problems that involve massive amounts of 
uncertainty, and as reflected in the phrase “fog of war”, this is certainly the 
situation in intelligence analysis.  Second, exploiting belief updating and belief 
revision algorithms, changes to belief are modified in real-time as each new 
piece of information is  received. Third, BNs provide decision makers with a 
graphical representation of the casual reasoning structure; this makes knowledge 
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Figure 2. Bayesian network probabilities – before (top) and after (bottom) observations.   
 
acquisition and understanding easier.  Note that a BN can accept input at the 
same level as is given to the human, thus the problem is different than low-level 
sensor fusion. Fourth, BNs allow playing what-if games: the analyst can change 

Vehicle count 40+ in 
“Named area of interest 
number 60” – NAI60.  

As a result of the high vehicle count in 
NAI60, the probability of this NAI as 
the location for the counter-attack 
force  increases substantially.  

Priority intelligence  
request #3: “Position  
of counter-attack force”. 
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the belief associated with various input reports and see how conclusions – in 
terms of distributions over PIRs – change.   
 
4. Bayesian Network Computation  
 
In this section, new heuristic algorithms for efficient inference are presented 
[Mengshoel, 1999a] [Mengshoel, 1999b].  These algorithms are implemented in 
the RAVEN software. This software includes a user interface front end, shown 
in Figure 2 and implemented in JAVA and Swing, and an algorithmic back end 
implemented in C++.   
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Figure 3. Predicted versus actual allocation of individuals to niches for a test function for 
the Probabilistic Crowding GA.  
 
4.1 Probabilistic Crowding Genetic Algorithm 
 
We have investigated the use of genetic algorithms (GAs) for approximate BN 
inference [Mengshoel, 1998c]. GAs are robust function optimizers that employ 
stochastic, instance-based (or population-based) search [Goldberg, 1989]. Since 
a BN represents a function, it is natural to consider using GAs to search in the 
space of BN explanations. 
 
As part of this research, investigations have been made into niching genetic 
algorithms, which converge to multiple local optima. Local optimum is an 
important problem in BN inference as well as in other hard inference and 
optimization problems. We have introduced the Probabilistic Crowding niching 
genetic algorithm [Mengshoel, 1999a] [Mengshoel, 1999b], and presented 
theoretical and empirical results showing that Probabilistic Crowding gives 
predictable convergence, which at equilibrium is proportional to the utility 
function.  Figure 3 presents empirical results for the Probabilistic Crowding GA 
(PCGA).   The figure shows the predicted allocation of individuals – essentially 
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the value of the utility function – as well as actual allocation of individuals for 
two PCGA variants:  PCGA with mutation only, and PCGA with mu tation and 
crossover.   For both variants, there is a very good correspondence between 
empirical results and the predicted allocation.  
 
4.2 Stochastic Greedy Search  
 
Improvements have been made to stochastic local search algorithms for BN 
inference by introducing the Stochastic Greedy Search approach [Mengshoel, 
1999a]. The Stochastic Greedy Search algorithm, which uses noisy and hill-
climbing search steps, different measures of gain, and an operator-based 
approach, provides different ways to perform local search. Stochastic Greedy 
Search also introduced novel initialization algorithms. Comparisons to the state-
of-the-art inference Hugin system, which implements the clustering algorithm 
[Lauritzen, 1988], show that Stochastic Greedy Search performs significantly 
better for satisfiability BNs as well as for certain application networks. In 
application networks, initialization algorithms prove to be very valuable.   The 
reason for this is that they, by exploiting structure as well as conditional 
probability tables in these BNs, typically start hill-climbing steps from a better 
starting point than simple random initialization.  
 
4.3 Abstraction in Bayesian Networks  
 
We have also made improvements to the use and measurement of abstraction 
and aggregation to improve BN inference [Mengshoel, 1998b] [Mengshoel, 
1999a]. A criterion is introduced that quantifies how different methods of 
abstraction and aggregation impact quality of inference. The criterion regards 
abstraction as noise and uses variance as a measure of quality.  Results are 
presented that quantify how different methods and levels of abstraction effect 
accuracy. 
 
5. Synthetic Bayesian Networks 
 
Two major research results are presented that relate to creating hard synthetic 
BNs for empirical research on inference algorithms.   
 
5.1 Hard Synthetic Bayesian Networks  
 
The first method of creating hard synthetic Bayesian networks translates 
satisfiability problems into BNs [Mengshoel, 1999a]. Connectivity, value of 
conditional probability tables, and degree of regularity of the underlying graph 
are shown to affect the speed of inference for Hugin and Stochastic Greedy 
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Search.  Figure 4 presents how regularity affects the speed of inference in the 
Hugin system.  For both irregular and regular BNs, inference time increases with 
increasing C/V-ratio, as expected based on previous results for satisfiability 
(SAT). Interestingly, the regular BNs are on the average harder than the 
irregular BNs, and to our knowledge this is the first time this effect has been 
shown for a structure-based system such as Hugin.  
 
5.2 Deceptive Bayesian Networks  
 
The concept of deception was introduced in order to systematically investigate 
conditions under which GA schema processing might lead a GA away from 
utility function optima [Goldberg, 1989]. The second method of creating hard 
synthetic Bayesian networks is based on translating deceptive problems studied 
in genetic algorithms to a BN setting, showing that BNs can be deceptive 
[Mengshoel, 1999a] [Mengshoel, 1999b].    
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Figure 4.  Computation time in Hugin, for regular and irregular BNs, as function of the 
ratio C/V, where C is the number of non-root nodes, V the number of root nodes.   The 
mean for 100 BN instances is presented.  
 
  
6. Summary and Conclusion  
 
This chapter has illustrated three points, details of which are greatly expanded 
elsewhere, especially in [Mengshoel, 1999a].  First, we have presented an 
approach to filtering and integrating intelligence data reports using Bayesian 
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networks. The approach addresses several of the challenges associated with 
intelligence analysis, including dealing with a large volume of reports as well as 
dealing with the uncertain and incomplete knowledge contained in the reports.  
Second, we have presented new BN inference approximation methods, in 
particular Probabilistic Crowding and Stochastic Greedy Search.  Third, we have 
presented results related to construction of synthetic Bayesian networks for 
empirical investigations.  
 
The Raven project has served as a basis of a number of other research efforts. 
The Co-Raven project [Jones, 1999; Wilkins, 1999] added sonification, 
collaboration, and a terrain map visualization interface to the Bayesian interface 
and reasoning core. Psychological studies have been performed relating to the 
accuracy of estimating Bayesian network probabilities, and the effect of specific 
estimates on global decision-making accuracy  [Chernyshenko, 1999]. 
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