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ABSTRACT 
 
Filtering, interpreting, and visualizing massive amounts 
of uncertain data is a core challenge of battlefield rea-
soning. Another challenge is the fact that knowledge 
about enemy and even friendly forces is uncertain and 
incomplete. This paper presents a Bayesian network 
approach to meet these challenges.  We present Bayes-
ian networks, and describe how they can be used for 
battlefield reasoning, in particular intelligence analy-
sis. We emphasize how Bayesian networks can be used 
for intelligent information processing in the form of fil-
tering, fusion, and selection of information.  
 

INTRODUCTION 
 

Bayesian networks (BNs) are an important knowledge rep-
resentation technique in artificial intelligence and related 
areas [Pearl 1988].  Substantial progress has been made 
over the last ten years in all areas of BN research. How-
ever, there are still important issues  to be addressed. In 
this paper, we take as starting point the domain of battle-
field reasoning, and present how BNs can be utilized in this 
area. Furthermore, we discuss research directions being 
pursued that should pave the way for more efficient, heu-
ristic BN inference for battlefield reasoning as well as in 
other domains.  
 
Battlefield reasoning is a complex reasoning task where 
uncertain and incomplete data and knowledge is pervasive, 
in particular with respect to the enemy's operations. A 
Bayesian network can be used to address these issues, and 
this paper discusses preliminary results in the domain of 
battlefield reasoning.  
 
The battlefield reasoning domain and task are presented, 
emphasizing intelligence analysis.  We discuss the domain 
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and task characteristics that are of interest: uncertainty, in-
completeness, dynamics, and sensing. An initial Bayesian 
network for the domain is presented, and we discuss how it 
is a representative of a class of Bayesian networks. We in-
vestigate the use of genetic algorithms (GAs) [Holland, 
1975] [Goldberg, 1989] for heuristic BN inference. GAs 
are robust function optimizers that employ stochastic, in-
stance-based (or population-based) search. Since a BN 
represents a function, it is natural to consider using GAs to 
search in the space of instantiated BNs, and in that way 
construct a heuristic algorithm for BN inference.  
 
The rest of this paper is organized as follows. First, Bayes-
ian networks are briefly presented. Second, a scenario for 
military intelligence analysis is given. Third, we discuss 
how to formally represent this scenario as a Bayesian net-
work. Fourth, we present how this network can be used for 
filtering, fusion, and intelligent selection of information. Fi-
nally, we conclude and outline directions for future re-
search.  
 

BAYESIAN NETWORKS 
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Figure 1. Example Bayesian network. 
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Bayesian networks are used for reasoning and learning un-
der uncertainty [Kim & Pearl, 1983] [Pearl, 1988] [Lau-
ritzen & Spiegelhalter, 1988].  Bayesian networks are also 
known as causal networks, belief networks, or influence 
diagrams. Probability theory and graph theory form their 
basis: random variables are nodes and conditional de-
pendencies are edges in a directed acyclic graph. Edges 
typically point from cause to effect. Temporal Bayesian 
networks can be used in dynamic environments [Meng-
shoel & Wilkins, 1997a]. A simple Bayesian network con-
sisting of the five nodes A, B, C, D, and E is shown in Fig-
ure 1.  In addition to the graph, there are conditional prob-
ability tables associated with each node V and its parents 
pa(V), expressing the conditional probability Pr( | pa(V)). 
For Figure 1, assuming discrete binary nodes with values 
{0,1}, Pr(D=0 | B=1, C=0)) is one of the entries in D’s 
conditional probability table.  
 
Inference in Bayesian networks is one focus of our re-
search. The inference task of belief updating amounts to 
the following: Given evidence at node E and query node Q, 
infer posterior probability Pr(Q | E=ei).  Any nodes in the 
network can be evidence or query nodes. For the example 
BN, this leads to different types of inference: (i) diagnostic 
– as in Pr(A | E=ei); (ii) causal - as in Pr(E | A=a j), and 
(iii) mixed – as in Pr(D | E=ei, A=aj ). A variety of ap-
proaches to Bayesian network inference have been inves-
tigated [Kim & Pearl, 1983] [Pearl, 1988] [Henrion, 1988] 
[Lauritzen & Spiegelhalter, 1988] [Horvitz et al., 1989][Lin 
et al., 1990] [Rojas-Guzman & Kramer, 1996] [Welch, 
1996]. These inference algorithms vary in many respects – 
they are exact, approximate, or heuristic; work on singly or 
multiply connected graphs; and are used for different infer-
ence tasks. Computational hardness has been shown both 
for belief updating [Cooper, 1990] and belief revision [Shi-
mony, 1994]. Research into non-exact algorithms for solv-
ing these tasks approximately or heuristically is therefore 
important, and is presented in more detail below.  
 

INTELLIGENCE ANALYSIS SCENARIO 
 
The purpose of intelligence analysis is to understand enemy 
activity and in particular to answer priority intelligence re-
quests (PIRs). There is a doctrinal one to one mapping be-
tween PIRs and decisions that are executed during battle, 
so PIRs play an important part in battlefield reasoning. The 
central component of the intelligence analysis task is ab-
duction, therefore intelligence analysis is similar to medical 
diagnosis: PIRs correspond to diagnoses, intelligence re-

ports correspond to symptoms.  Intelligence analysis takes 
as input reports concerning enemy activity and produces 

PIRs with associated measure of confidence (or posterior 

Figure 2. Maps at different levels of abstraction 
for intelligence analysis scenario. 
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probabilities, beliefs). An intelligence analysis BN can be 
used to perform this filtering task automatically.  
 
As an example, consider the scenario shown in Figure 2. 
(This scenario is adapted from [Schlabach, 1997].) The 
highest abstraction level is shown at the top, the lowest ab-
straction level at the bottom in this figure.  At the highest 
level of abstraction, the commander is interested in lines of 
defensible terrain (LDTs), and in particular which LDT the 
enemy has chosen to defend. In this case there are two 
LDTs - LDT-1 and LDT-2. At the middle level of abstrac-
tion, we find the enemy forces, in this case BN-1 and BN-
2. Finally, at the lowest level of abstraction we find map lo-
cations and named areas (NAIs) in particular.  
 
 

REPRESENTATION USING BAYESIAN 
NETWORKS 

 
The battlefield reasoning challenge is twofold: First,   
sensor data is low-level, high-volume, and uncertain. Sec-
ond, model knowledge is uncertain and incomplete.  The 
Bayesian network approach, as illustrated in Figure 3, is to 
perform data fusion and filtering using a Bayesian network 
and output and visualize the results.  

 
 
We will distinguish between two classes of scenarios. In 
defensive enemy scenarios, the enemy is defending, 
friendly is attacking. The scenario presented above is of 
this type. Here, a non-temporal belief network is used to 
model the enemy and to filter uncertain information. In of-
fensive enemy scenarios, the enemy is attacking, friendly is 

defending. Temporal belief networks are used to model the 
enemy and to filter uncertain information in these situations 
[Mengshoel & Wilkins, 1997a]. In the following we will fo-
cus on the defensive enemy scenario from the previous 
section, however the approach generalizes to other scenar-
ios.  

 
A partial Bayesian network model for battlefield reasoning, 
the RAVEN BN, is shown in Figure 4. This network con-

sists of three main layers, which can be mapped to the mili-
tary intelligence community's terminology [Schlabach, 
1997]. Starting from the top of Figure 4, the layers are as 
follows. First, the diagnosis layer corresponds to priority in-
telligence requests (PIRs). Second, the filtering layer cor-
responds to specific intelligence requests (SIRs). Third, the 
message layer corresponds to observable SIRs. Also notice 
the correspondence to the three levels of abstraction visu-
alized in Figure 2.  
 
Due to space limitations, the conditional probability tables 
of the RAVEN BN are not shown here. The states of the 
nodes are presented in Figure 5 – the numbers in this figure 
may be ignored for now.  The PIR in this BN is the node 
Enemy-def., which ranges over states {LDT-1, LDT-2}. 
This node describes the enemy’s two possible LDTs – see 
Figure 2. The nodes BN-1 and BN-2 in the filtering layer 
model where the two battalions are, so they both range 
over the line segments {S-1, S-2, S-3, S-4}. The nodes 
BN@NAI-1 and BN@NAI-2 describe the allocation of 
enemy BNs to map locations, and in particular to NAIs. Fi-
nally, the six nodes in the message layer represent whether 
certain signatures are or are not observed in a particular 
NAI. For example, Radio-traffic@NAI-1 has states {Yes, 
No} and represents whether or not there is radio traffic in 
NAI-1.  
 

INFERENCE USING BAYESIAN NETWORKS 
 
The BN model described above can be used to draw prob-
abilistic inferences. First, consider the probabilities (or con-

Sensor data
Belief network
for sensor data

fusion

Visualization
of output on
terrain map

BN Input BN System BN Output

Figure 3. Bayesian network (BN) system for 
filtering battlefield data.  

Figure 4. The RAVEN Bayesian network for 
filtering battlefield data. 
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fidences) over the node Enemy-def. based on prior knowl-
edge - before any messages arrive. LDT-1 is the most 
probable line of defense, as can be seen to the left in Fig-
ure 5.  Note that probabilities are given in percentages 
rather than on the usual [0,1] scale. So based on prior 
knowledge, there is an 80% chance that Enemy def. is 
LDT-1, while there is a 20% chance that it is LDT-2. 
 
Now suppose three messages arrive: "No obstacles at 
NAI-1",  "Radio traffic at NAI-1", and "No tanks at NAI-
1". To reflect these messages, the corresponding three 
nodes are clamped to the appropriate values as shown to 
the right in Figure 5. Because of these updates of the BN, 
the inference procedure updates the probabilities over the 
other nodes in the network as shown to the right in Figure 
5. In particular, the Enemy-def. state LDT-2 is now the 
most probable, with 60.42% chance. The chance of LDT-1 
is 39.58%. This is consistent with the intuition that not see-
ing tanks or obstacles in any NAI on LDT-1 makes LDT-2 
more probable - see Figure 2.   
 
The inference algorithm of the BN tool used above, 
HUGIN, is an exact algorithm known as clustering 
[Lauritzen & Spiegelhalter, 1988]. For sparse BNs this al-
gorithm works well, however for large and strongly con-
nected BNs it doesn't. For this reason, a heuristic approach 
to belief revision in BNs is investigated [Mengshoel, 1997] 
[Mengshoel & Wilkins, 1998]. More specifically, we as-
sume that the GA fitness function is a joint probability den-
sity function represented as a BN. This is a restriction on 
the fitness function, but probability theory in general and 
BNs in particular have proven sufficiently rich to make this 
an interesting restriction. Using a GA has three advantages: 
simplicity, robustness, and efficiency. First, a GA is a rela-
tively simple algorithm. Second, the search provided by a 
GA should give robust inference across a spectrum of 
BNs. Third, there might be BNs where the GA is more ef-
ficient than other inference algorithms, in particular com-
pared to stochastic simulation algorithms when there is 
low-probability evidence [Welch, 1996].  
 
Building on previous research [Lin et al., 1990] [Rojas-
Guzman & Kramer, 1996] [Welch, 1996], our research has 
so far focused on GA selection and BN abstraction in the 
context of GAs [Mengshoel, 1997] [Mengshoel & Wilkins, 
1997b] [Mengshoel & Wilkins, 1998]. Concerning selection 
in GAs, our research has shown empirically that combining 
the GA techniques of scaling and niching [Goldberg & 
Richardson, 1987] [Goldberg, 1989] improves GA-based 
belief revision significantly [Mengshoel & Wilkins, 1998].  

 
 

CONCLUSION AND FUTURE WORK 
 
This paper has presented an approach to filtering and visu-
alizing battlefield data using Bayesian networks. In particu-
lar, the approach addresses two of the main challenges as-
sociated with battlefield reasoning, namely the uncertainty 
associated with the data as well as the uncertain and in-
complete knowledge of the process generating that data, be 
it enemy or friendly forces.  Current research using genetic 
algorithms for Bayesian network inference has also been 
described.  
 
There are several directions of future work. First, the pro-
totype Bayesian network RAVEN presented here needs to 
be extended and generalized, including generalizing the ap-
proach to encompass other scenarios. Second, there is 
need for research on improving the efficiency of BN infer-
ence. Third, there is a need for improving the user inter-
face, including visualization and sonification that would al-
low for cooperation between many experts in military 
analysis working on essentially the same Bayesian net-
work.  
 
Acknowledgements: Thanks to MAJ J. L. Schlabach for 
his help in constructing the RAVEN network.  
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