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Abstract. Belief networks are graphical models that encode probability 
distributions; they are used for reasoning and learning under uncertainty. 
Genetic algorithms &re inspired by nature, and are used for adaptation, 
search, optimization, and learning in complex environments. This pa- 
per focuses on the use of a belief network as a genetic algorithm fitness 
function, and presents theoretical and empirical results related to fit- 
ness function sharing and scaling. In particular, we show that niching 
combined with scaling significantly improves a genetic algorithm's per- 
formance for belief network inference. 

1 Introduction 

Genetic algorithms (GAS) are inspired by nature and are used for adaptation, 
search, optimization, and learning in complex environments [7]. Belief networks 
(BNs) are graphical models that are based on probability theory and graph 
theory, and are used to reason and learn under uncertainty [15]. We consider how 
to use a GA's function optimization capability as a BN inference algorithm [12] 
[14], in particular the role of the GA techniques niching and scaling. Exact BN 
inference is NP-hard [2] [19] and may therefore put a GA's search capabilities 
to a serious test. GAS have been used optimize other NP-hard problems [3], 
however BN inference is a particularly important one, given the prominence of 
probabilistic approaches in AI. 

There is some previous research on using GAS for BN inference. Most closely 
related to this work is that of Lin et al. [ll], Rojas-Guzman and Kramer [16] [17], 
Gelsema [5], Santos and Shimony [18], and Welch [21]. Most of these efforts focus 
on using the GA for abductive BN inference; i.e. to compute the most probable 
explanation given any instantiation of a subset of the BN nodes. This paper 
considers the role of niching and scaling in a GA used to search for the most 
probable explanations in a BN. The main contribution of the paper is that 
it identifies that non-trivial BNs are multi-modal fitness functions where the 
diversity-preserving technique of niching is of help. The role of scaling in using 
GAS for BN inference has been explored in earlier research [16] [17]. However, 
this paper adds to that research by suggesting a new scaling function and also 
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by finding that scaling and niching performs significantly better than either 
technique alone. 

The rest of this paper is structured as follows. Section 2 briefly presents 
BNs and BN inference tasks. Section 3 reviews niching, in particular the fitness 
sharing approach to niching. Section 4 discusses theoretical issues in integrating 
GAS and BNs. Section 5 reports on experiments performed. Section 6 concludes 
and outlines directions for future research. 

2 Belief Networks 

A belief network (BN) represents a joint probability distribution in a compact 
manner, by exploiting a graph structure. This section introduces formal defini- 
tions related to BNs, and also defines belief network inference tasks. 

Definition 1. Let {VI, ..., V,} be random variables, (211, ..., v,} instantiations 
of those random variables. Here, instantiation vi goes with random variable V,. 
Then  Pr(v) denotes the joint probability distribution over the variables {VI, ..., V,}: 

Pr(v) = Pr(v1, ..., v,) = Pr(V1 = VI, ..., V, = w,), 

The notion of a belief network, also known as a Bayesian network, causal 
network, or Bayesian belief network, can now be introduced. 

Definition 2. A belief network is a tuple (V, W,Pr),  where (V, W) i s  a di- 
rected acyclic graph (DAG) with nodes V = { fi, . . .V,}? edges W = { W1, . . . Wm}. 
Pr i s  a set of conditional probability tables. For each node V,  E V there is one 
such table Pr(V, IPa(K) )?  which de,fines a conditional probability distribution 
over V ,  in terms of its parents Pa( V , )  . 

Consider a belief network over the nodes V. It can be shown that the joint 
probability distribution Pr(v) is as follows, where pa(&) c {wi, . . . , v,}: 

n 

Pr(v) = Pr(w1,. . . , w,) = JJ Pr(wi I pa(K)), (1) 

Belief networks are different from most other GA fitness functions in their 
accommodation of evidence through conditioning. If nodes E ={El, ..., E,} are 
instantiated to {El = e l ,  ..., E, = ee}, we can use Bayes’ rule to compute the 
posterior belief over the remaining nodes X = V - E: 

i=l 

Pr(e) can be computed by marginalization, however this is often not done, since 
Pr(x, e) can in many cases be used directly instead. 

All explanations are not equal. In particular, those that are more probable 
are typically of greater interest, leading to the following definition. 



Definition 3. Let all the explanations be ordered according to  their posterior 
probability: Pr(x1 I e) 2 Pr(x2 I e) 2 Pr(x3 I e) 2 ... The most probable expla- 
nation (MPE)  is XI. The k most probable explanations (IC-MPE) are XI,  ..., xk. 

Two typical BN inference tasks are belief updating and belief revision [15]. 
Belief revision is concerned with computing the MPE or more generally the lc- 
MPE. Exact belief revision has been shown to be NP-hard [19]. At the same 
time, inference in many BNs of practical value has proven to be tractable. 

The following definitions are needed because of our GAS setting. 

Definition 4. A population consists of individuals (or chromosomes). In the 
current setup, a population consists of a set of explanations {XI, ..., x*}, where 
s is the population size. 

3 Niching in Genetic Algorithms 

The simple GA is suitable for function maximization, corresponding to finding 
the MPE in belief revision. However, the simple GA can have problems with 
premature convergence, so that a local maximum rather than a global maximum 
is found. Furthermore, for belief updating, or for computing k-MPE, one is more 
interested in function covering rather than pure function optimization. 

This paper focuses on the technique known as niching [6]. Niching is based on 
the metaphor from nature that different species or subpopulations have different 
niches. There is no competition between niches, however within a niche there is 
competition. Within GAS, niching allows different parts of the fitness function to 
be explored in parallel, with convergence to several rather than just one function 
maximum. 

Goldberg and Richardson asked and answered these two niching questions [6]: 
Who should share? How much should be shared? The essence of the answers to 
these questions is to consider the degree of similarity between two individuals in 
the GA population. 

Definition 5. Consider two individuals Ai and A i .  A distance funct ion di j ,  
which i s  inverse to  the similarity between Ai and A j ,  is introduced: dij = d(Ai,  A j )  

In addition, a sharing function s is constructed, and the following power law 
function suggested [6]: 

s ( d )  = { 1 - if d < cshare 

0, otherwise 

Here Ushare and Q: are constants. While the distance d between two individuals 
determines who should share, the sharing function s says how much they should 
share. The next issue is sharing across the population; this is formalized by the 
notion of niche count. 



Definition 6. Consider individual Ai.  The niche count mi of Ai i s  

n n 

j=1 j = I  

Now individual Ai’s shared fitness fl can be calculated as fl = fi/m:,where 
fi is the individual’s raw fitness as computed by the objective function. The 
shared fitness f,! can now be used as a fitness function in the simple GA. 

Using fitness sharing, Goldberg and Richardson considered two multi-modal 
functions F1 and F2. FI is periodic with five peaks of equal magnitude, while F2 
is periodic with five peaks of decreasing magnitude. On these two functions, the 
simple GA with shared fitness gave niching while the simple GA with raw fitness 
did not. Later, Deb and Goldberg found that sharing outperformed crowding [4]. 
Both phenotypic and genotypic sharing was considered, as was a mating restric- 
tion scheme for improving on-line performance. The sharing function approach 
has also been applied to deceptive and multimodal functions [8]. For certain de- 
ceptive and multi-modal functions, a niching GA using sharing found all global 
solutions when the population was sized appropriately and the objective function 
was scaled to emphasize global solutions [8]. A strength of the sharing function 
approach is that it gives good control over sharing. A limitation is that O(n2) 
steps are used for computing mi over the entire population. However, this time 
complexity can be reduced by using sampling to approximate mi. 

4 Belief Network Inference using Genetic Algorithms 

This section describes our approach to using a GA for BN inference. First, we 
focus on the fitness function to use, then on the encoding of a BN instantiation 
as a GA string as well as on the relationship between belief updating and belief 
revision when a GA is used as an inference engine for BNs. 

Which objective function should be used? The most natural choice is to use 
the posterior probability Pr(x, e)  as defined in Eq. 2, and this is done here. 

How should a BN instantiation be encoded as a genetic algorithm string? 
Since a BN is a DAG, a topological sort can be used to linearly order the nodes 
in the BN, and a GA string may be organized according to the linear order. We 
consider BNs where nodes represent discrete random variables, and in particular 
the special case where all nodes are binary. Let V,  = vi be the assignment to node 
number i in such a BN, so vi E (0, l) .  Then the following defines a one-to-one 
mapping from node to bit b; in position i in bitstring B: 

b ;=  OifE=O { l i f E = l ’  

This mapping is used for coding and decoding purposes when the BN represen- 
tation is different from the GA representation. 

Having presented the objective function and the GA encoding, we now con- 
sider properties of the objective function. Elsewhere, it has been demonstrated 



that BNs can be deceptive [13]. Definition 2, Equation 2, and the fact that the 
conditional probabilities can be arbitrarily close to zero or one suggest that BN 
fitness functions that are in the general case multimodal and give fitness values 
that vary significantly, even between strings that are close in Hamming space. 
Multimodality is the reason why niching is important; high fitness variance is 
the reason for scaling. 

First, we discuss niching and in particular the sharing approach to niching. 
Since we consider discrete BNs, genotypic sharing is more appropriate than phe- 
notypic sharing although phenotypic sharing has been found to perform better 
in some instances [4]. Concerning the niching parameters, the discussion above 
suggests that gshare = 1 is appropriate for belief updating and k-MPE inference. 
In other words, sharing only takes place between individuals on the same peak. 
If we let Ushare > 1, we risk a situation where, say, two close or adjacent in- 
dividuals (in Hamming-space) both have high fitness, but in the limit one will 
dominate the other and thus one of two high-probability assignments will get 
lost. For computing the MPE in belief revision, the optimal gshare-value is less 
clear, since the role of sharing is here to prevent premature convergence rather 
than to give covering. We may let gshare = 1 also for MPE belief revision, but 
also consider other sharing values in Section 5. 

There is a problem with using the objective function in Eq. 2 directly as 
the fitness function. In particular, the selection pressure early in a run is too 
large. In several exploratory runs an individual with relatively high fitness (a 
super-individual) showed up in the first generation, and because other first- 
generation individuals typically have very low fitness, the super-individual very 
quickly takes over the population, even though it is sub-optimal. To counteract 
this, some form of scaling can be used [7]. 

The problem of super-individuals in early generations and addressing this 
by using a scaling function are general issues in GA design-are there aspects 
specific to BNs? Scaling for BNs was investigated by Rojas-Guzman and Kramer 
[16] [17]. The functions they used were cPr(-), l/log2(Pr(.)), and l /n ,  where cis 
a scaling constant and n is the population size. However, no justification is given 
for these particular scaling functions, so it is appropriate to develop a theoretical 
basis for sharing and scaling functions for objective functions that are BNs. Since 
Eq. 1 is multiplicative, the differences between fitness values might be very large. 
Taking this into account, we suggest the following root scaling function 

where JVI is the number of nodes in the BN. Intuitively, taking the root coun- 
teracts the multiplicative (or exponential) effect of Eq. 1. For simplicity, assume 
that approximately IVl/2 factors in Eq. 1 are relatively 'small' and equal; x* 
then recovers this value. By using xlvl/4 instead, we get a stronger selection 
pressure. The scaling function tl can be contrasted with the inverse logarithmic 
scaling function t 2 ,  which was the function suggested by Rojas-Guzman and 
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Fig. 1. Objective function evolution for BN1 (left column) and BN2 (right column) for 
the niching condition with OShare = 1. The top row shows best individual, the bottom 
row shows sum of all unique individuals. The dashed line shows no scaling, the dotted 
line shows inverse logarithmic scaling, while the solid line shows root scaling. 

Kramer that gave the best results in their experiments [16]: 

t2(z) = 1/log2(z). (5) 
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Is there a difference between belief revision and belief updating when it comes 
to scaling? We conjecture that root scaling is better for belief updating while 
inverse logarithmic scaling is better for belief revision. The reason for this is that 
t l ( z )  >> t2(z) for small z, meaning that tl typically retains more diversity than 
t2, and belief updating is more dependent on diversity than belief revision is. 
However, it is hard to predict the exact effect of scaling for BNs, and in particular 
how scaling interacts with sharing. Experimentation is needed, and this is what 
we turn to next. 

5 Experiments in Belief Network Inference using GAS 

A simple GA (SGA) variant with niching and scaling as well as a BN interface has 
been implemented in Common Lisp and integrated with the IDEAL system for 
BN inference [20]. IDEAL is used for BN representation and objective function 



evaluation, not inference, in this study. The only difference between this SGA 
and the standard SGA [7] is that this one uses stochastic universal sampling [l]. 

These parameters were used throughout the experiments reported in the 
following: population size n = 200, crossover probability Pr(Crossover) = 0.6, 
mutation probability Pr(Mutation) = 0, sharing parameter a = 1, max gener- 
ation t,,, = 50, and 30 runs per condition. A mutation rate of zero was used 
because we wanted to focus on crossover only in this study. Sharing parameters 
Oshare = 1, ushare = 2 and Oshare = 5 have been used. w e  focus on two de- 
pendent measures: most probable explanation (or maximum objective function 
value) and total probability of explanations. The former is most important for 
belief revision, while the latter is most important for belief updating and for 
computing the k-MPE. 

A BN consisting of 20 binary nodes with maximal in-degree six was created 
at random. The distribution of this BN, BN3, was then changed in additional 
BNs to make it more ‘natural’. In BN1, all distributions were 0.9/0.1. In BN2, 
all distributions were either 0.9/0.1 or 0.6/0.4. Note that only the conditional 
probability tables were changed; the graph structure is the same for all three 
BNs. BN1 represents a domain with some uncertainty. BN2 represents a domain 
where some aspects are slightly uncertain (0.9/0.1 distributions), while other 
aspects are highly uncertain (0.6/0.4 distributions). BN3 represents a domain 
where there is a lot of variability in uncertainty. Intuitively, we expect that 
BN2 represents a ‘typical’ BN. BN1 is on the certain end of the spectrum, 
while BN3 is on the uncertain end of the spectrum. By using all three BNs 
for experimentation, the generality of our GA/BN approach is tested. 

First, the sharing parameter ushare = 1 is tested. In the following, a statistical 
hypothesis test using two sample averages, unknown variances, and large samples 
is used. The significance level is 0.05. We focus on BN1 and BN2, since these 
are the more interesting BNs. Table 1, Table 2, and Figure 1 summarize the 
experimental results, which are presented in the following. In the tables, mean 
and standard deviation (st. dev.) refer to the normal (or Gaussian) distribution. 

Hypothesis A: Niching is helpful both for  finding the most probable individual 
and for  maximizing total probability mass. For finding the most probable expla- 
nation, consider rows 1-3 versus 4-6 in Table 1. For maximizing total probability 
mass, consider rows 1-3 versus 4-6 in Table 2. This hypothesis is supported by 
the data for inverse logarithmic and root scaling, but not for the no scaling 
condition. 

Hypothesis B: Scaling is helpful both for  finding the most probable individual 
and for  maximizing total probability mass. For the effect of scaling on the most 
probable individual, consider rows 2-3 versus row 1 as well as rows 5-6 versus 
row 4, all in Table 1. For the effect of scaling on maximizing total probability 
mass, consider rows 2-3 versus row 1 as well as rows 5-6 versus row 4 Table 2. 
The main result here is that with niching, scaling gives a statistically significant 
effect. When there is no niching, the picture is more complicated. In Table 1, 
only row 1 versus row 3 for BN1 is significant. In Table 2, all rows except row 1 
versus row 2 for BN1 is significant. 



Niching Scaling Mean St.dev. Mean St.dev. 
BN1 BN2 

0.00126 0.00155 
0.00221 0.00189 

0.0463 0.0544 0.00162 0.00177 
Yes 0.0363 0.0481 0.00238 0.00185 
Yes 

T 
0.000235 0.000124 
0.000245 0.000110 
0.000363 0.000127 
0.000311 0.0000987 

Yes Root 0.118 0.0197 10.00445 0.00211 0.000286 0.0000969 I 
Table 1. Best fit (maximum probability) individual for the three experimental BNs. 
The no niching condition comprises the three top rows, the niching condition the three 
bottom rows. 

BN1 BN2 BN3 
Mean St.dev. Mean St.dev. Mean St.dev. Niching 

No No 0.0127 0.0302 0.00135 0.00161 0.000235 0.000200 
No Inv. log. 0.0358 0.0486 0.00320 0.00281 0.00136 0.000670 
No Root 0.0477 0.0545 0.00352 0.00287 0.000940 0.000468 
Yes No 0.0617 0.0713 0.0222 0.0112 0.00613 0.00122 
Yes Inv. log. 0.312 0.0195 0.0444 0.0116 0.00522 0.00113 
Yes Root 0.309 0.0577 0.0435 0.00773 0.00515 0.000716 

Table 2. Total probability mass for the three experimental BNs. 

Hypothesis C: Inverse logarithmic scaling is best for finding the most probable 
individual, while root scaling is better for maximizing total probability mass. This 
hypothesis is clearly not supported by the data; if anything the results are the 
opposite. However, there is no statistical significance at t,,, . Figure 1 still gives 
interesting information. For BN1, there is very little difference between the two 
scaling schemes. For BN2, however, there are some differences. In both cases, root 
scaling is indeed slightly better than inverse logarithmic scaling up till t M 35, 
corresponding to our positive expectations for root scaling. On the negative side, 
root scaling appears to be less stable than inverse logarithmic scaling. 

So far, the sharing value (Tshare = 1 has been considered. Even though this 
value was picked based on fitness function considerations, it is a very low shar- 
ing value. Experiments with sharing values (Tshare = 2 and (Tshare = 5 were 
also performed, resulting in the following findings. Most significant is the fact 
that (TShare = 5 does not work well. Comparing (Tshare = 1 and (Tshare = 2, for 
the scaled conditions (Tshare = 1 outperforms (Tshare = 2 except for the inverse 
logarithmic scaling on BN1. For this case, Ushare = 1 and oshare = 2 perform ap- 
proximately the same. These results correspond to what was expected, although 
it was a little unexpected that Ushare = 1 performed as well as it did compared 
to (Tshare = 2, in particular on the maximal fitness task. 

What do the results in this and the previous section mean? Based on these 
results, we would recommend to use both niching and scaling when using a GA 
for BN inference. In particular, using small sharing values such as (Tshare = 1 
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or Oshare = 2 is best. As for the issue of root scaling versus inverse logarithmic 
scaling, our results are less conclusive. 

6 Conclusion and Future Work 

This work has focused on employing genetic algorithms (GAS) for belief network 
(BN) inference. In particular, we have shown how niching and scaling signif- 
icantly improves the GAS performance under proportionate selection. Scaling 
only gave a statistically significant result when niching was also used. To get 
full effect from scaling, one also needs to use a niching scheme. This applies to 
finding the best fit individual as well as maximizing total fitness. 

Although GAS are particularly suited for computing the most probable ex- 
planations in a BN with discrete nodes, other forms of evolutionary computation 
could be suited for closely related inference and learning tasks. In graphical mod- 
els with continuous random variables, evolution strategies should prove useful. 
Evolutionary programming techniques could also be exploited; notice the sim- 
ilarity between a transition table in a finite state machine and a conditional 
probability table. Genetic programming could applied after a generalization of 
BNs to stochastic programs rather than the deterministic programs that genetic 
programming usually works with. 

There are several other areas for current and future research. First, additional 
theoretical research on combining niching and scaling in the context of using GAS 
for BN inference would be fruitful. A second area of interest is the performance 
of our approach compared to other approaches to BN inference, both traditional 
ones and approaches based on other GAS or other evolutionary algorithms. A 
third area of interest is approximate objective function evaluation. A BN can 
be approximated using the techniques of abstraction and aggregation, and the 
GA could (initially) use this approximate BN rather than the full-blown BN for 
objective function evaluation [14]. 
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